Paper ID: 2312.13193

HCDIR: End-to-end Hate Context Detection, and Intensity Reduction model for online comments

Neeraj Kumar Singh, Koyel Ghosh, Joy Mahapatra, Utpal Garain, Apurbalal Senapati

Warning: This paper contains examples of the language that some people may find offensive. Detecting and reducing hateful, abusive, offensive comments is a critical and challenging task on social media. Moreover, few studies aim to mitigate the intensity of hate speech. While studies have shown that context-level semantics are crucial for detecting hateful comments, most of this research focuses on English due to the ample datasets available. In contrast, low-resource languages, like Indian languages, remain under-researched because of limited datasets. Contrary to hate speech detection, hate intensity reduction remains unexplored in high-resource and low-resource languages. In this paper, we propose a novel end-to-end model, HCDIR, for Hate Context Detection, and Hate Intensity Reduction in social media posts. First, we fine-tuned several pre-trained language models to detect hateful comments to ascertain the best-performing hateful comments detection model. Then, we identified the contextual hateful words. Identification of such hateful words is justified through the state-of-the-art explainable learning model, i.e., Integrated Gradient (IG). Lastly, the Masked Language Modeling (MLM) model has been employed to capture domain-specific nuances to reduce hate intensity. We masked the 50\% hateful words of the comments identified as hateful and predicted the alternative words for these masked terms to generate convincing sentences. An optimal replacement for the original hate comments from the feasible sentences is preferred. Extensive experiments have been conducted on several recent datasets using automatic metric-based evaluation (BERTScore) and thorough human evaluation. To enhance the faithfulness in human evaluation, we arranged a group of three human annotators with varied expertise.

Submitted: Dec 20, 2023