Paper ID: 2312.13234
Position Paper: Bridging the Gap Between Machine Learning and Sensitivity Analysis
Christian A. Scholbeck, Julia Moosbauer, Giuseppe Casalicchio, Hoshin Gupta, Bernd Bischl, Christian Heumann
We argue that interpretations of machine learning (ML) models or the model-building process can be seen as a form of sensitivity analysis (SA), a general methodology used to explain complex systems in many fields such as environmental modeling, engineering, or economics. We address both researchers and practitioners, calling attention to the benefits of a unified SA-based view of explanations in ML and the necessity to fully credit related work. We bridge the gap between both fields by formally describing how (a) the ML process is a system suitable for SA, (b) how existing ML interpretation methods relate to this perspective, and (c) how other SA techniques could be applied to ML.
Submitted: Dec 20, 2023