Paper ID: 2312.14232
Parrot Captions Teach CLIP to Spot Text
Yiqi Lin, Conghui He, Alex Jinpeng Wang, Bin Wang, Weijia Li, Mike Zheng Shou
Despite CLIP being the foundation model in numerous vision-language applications, the CLIP suffers from a severe text spotting bias. Such bias causes CLIP models to `Parrot' the visual text embedded within images while disregarding the authentic visual semantics. We uncover that in the most popular image-text dataset LAION-2B, the captions also densely parrot (spell) the text embedded in images. Our analysis shows that around 50% of images are embedded with visual text content, and around 30% of captions words are in these embedded visual content. Based on such observation, we thoroughly inspect the different released versions of CLIP models and verify that the visual text is the dominant factor in measuring the LAION-style image-text similarity for these models. To examine whether these parrot captions shape the text spotting bias, we train a series of CLIP models with LAION subsets curated by different parrot-caption-oriented criteria. We show that training with parrot captions easily shapes such bias but harms the expected visual-language representation learning in CLIP models. This suggests that it is urgent to revisit either the design of CLIP-like models or the existing image-text dataset curation pipeline built on CLIP score filtering.
Submitted: Dec 21, 2023