Paper ID: 2312.14426

Room Occupancy Prediction: Exploring the Power of Machine Learning and Temporal Insights

Siqi Mao, Yaping Yuan, Yinpu Li, Ziren Wang, Yuanxin Yao, Yixin Kang

Energy conservation in buildings is a paramount concern to combat greenhouse gas emissions and combat climate change. The efficient management of room occupancy, involving actions like lighting control and climate adjustment, is a pivotal strategy to curtail energy consumption. In contexts where surveillance technology isn't viable, non-intrusive sensors are employed to estimate room occupancy. In this study, we present a predictive framework for room occupancy that leverages a diverse set of machine learning models, with Random Forest consistently achieving the highest predictive accuracy. Notably, this dataset encompasses both temporal and spatial dimensions, revealing a wealth of information. Intriguingly, our framework demonstrates robust performance even in the absence of explicit temporal modeling. These findings underscore the remarkable predictive power of traditional machine learning models. The success can be attributed to the presence of feature redundancy, the simplicity of linear spatial and temporal patterns, and the advantages of high-frequency data sampling. While these results are compelling, it's essential to remain open to the possibility that explicitly modeling the temporal dimension could unlock deeper insights or further enhance predictive capabilities in specific scenarios. In summary, our research not only validates the effectiveness of our prediction framework for continuous and classification tasks but also underscores the potential for improvements through the inclusion of temporal aspects. The study highlights the promise of machine learning in shaping energy-efficient practices and room occupancy management.

Submitted: Dec 22, 2023