Paper ID: 2312.14664
Density Uncertainty Quantification with NeRF-Ensembles: Impact of Data and Scene Constraints
Miriam Jäger, Steven Landgraf, Boris Jutzi
In the fields of computer graphics, computer vision and photogrammetry, Neural Radiance Fields (NeRFs) are a major topic driving current research and development. However, the quality of NeRF-generated 3D scene reconstructions and subsequent surface reconstructions, heavily relies on the network output, particularly the density. Regarding this critical aspect, we propose to utilize NeRF-Ensembles that provide a density uncertainty estimate alongside the mean density. We demonstrate that data constraints such as low-quality images and poses lead to a degradation of the training process, increased density uncertainty and decreased predicted density. Even with high-quality input data, the density uncertainty varies based on scene constraints such as acquisition constellations, occlusions and material properties. NeRF-Ensembles not only provide a tool for quantifying the uncertainty but exhibit two promising advantages: Enhanced robustness and artifact removal. Through the utilization of NeRF-Ensembles instead of single NeRFs, small outliers are removed, yielding a smoother output with improved completeness of structures. Furthermore, applying percentile-based thresholds on density uncertainty outliers proves to be effective for the removal of large (foggy) artifacts in post-processing. We conduct our methodology on 3 different datasets: (i) synthetic benchmark dataset, (ii) real benchmark dataset, (iii) real data under realistic recording conditions and sensors.
Submitted: Dec 22, 2023