Paper ID: 2312.14706
BonnBeetClouds3D: A Dataset Towards Point Cloud-based Organ-level Phenotyping of Sugar Beet Plants under Field Conditions
Elias Marks, Jonas Bömer, Federico Magistri, Anurag Sah, Jens Behley, Cyrill Stachniss
Agricultural production is facing severe challenges in the next decades induced by climate change and the need for sustainability, reducing its impact on the environment. Advancements in field management through non-chemical weeding by robots in combination with monitoring of crops by autonomous unmanned aerial vehicles (UAVs) and breeding of novel and more resilient crop varieties are helpful to address these challenges. The analysis of plant traits, called phenotyping, is an essential activity in plant breeding, it however involves a great amount of manual labor. With this paper, we address the problem of automatic fine-grained organ-level geometric analysis needed for precision phenotyping. As the availability of real-world data in this domain is relatively scarce, we propose a novel dataset that was acquired using UAVs capturing high-resolution images of a real breeding trial containing 48 plant varieties and therefore covering great morphological and appearance diversity. This enables the development of approaches for autonomous phenotyping that generalize well to different varieties. Based on overlapping high-resolution images from multiple viewing angles, we compute photogrammetric dense point clouds and provide detailed and accurate point-wise labels for plants, leaves, and salient points as the tip and the base. Additionally, we include measurements of phenotypic traits performed by experts from the German Federal Plant Variety Office on the real plants, allowing the evaluation of new approaches not only on segmentation and keypoint detection but also directly on the downstream tasks. The provided labeled point clouds enable fine-grained plant analysis and support further progress in the development of automatic phenotyping approaches, but also enable further research in surface reconstruction, point cloud completion, and semantic interpretation of point clouds.
Submitted: Dec 22, 2023