Paper ID: 2312.15068
Refining GPT-3 Embeddings with a Siamese Structure for Technical Post Duplicate Detection
Xingfang Wu, Heng Li, Nobukazu Yoshioka, Hironori Washizaki, Foutse Khomh
One goal of technical online communities is to help developers find the right answer in one place. A single question can be asked in different ways with different wordings, leading to the existence of duplicate posts on technical forums. The question of how to discover and link duplicate posts has garnered the attention of both developer communities and researchers. For example, Stack Overflow adopts a voting-based mechanism to mark and close duplicate posts. However, addressing these constantly emerging duplicate posts in a timely manner continues to pose challenges. Therefore, various approaches have been proposed to detect duplicate posts on technical forum posts automatically. The existing methods suffer from limitations either due to their reliance on handcrafted similarity metrics which can not sufficiently capture the semantics of posts, or their lack of supervision to improve the performance. Additionally, the efficiency of these methods is hindered by their dependence on pair-wise feature generation, which can be impractical for large amount of data. In this work, we attempt to employ and refine the GPT-3 embeddings for the duplicate detection task. We assume that the GPT-3 embeddings can accurately represent the semantics of the posts. In addition, by training a Siamese-based network based on the GPT-3 embeddings, we obtain a latent embedding that accurately captures the duplicate relation in technical forum posts. Our experiment on a benchmark dataset confirms the effectiveness of our approach and demonstrates superior performance compared to baseline methods. When applied to the dataset we constructed with a recent Stack Overflow dump, our approach attains a Top-1, Top-5, and Top-30 accuracy of 23.1%, 43.9%, and 68.9%, respectively. With a manual study, we confirm our approach's potential of finding unlabelled duplicates on technical forums.
Submitted: Dec 22, 2023