Paper ID: 2312.15187

IRG: Generating Synthetic Relational Databases using GANs

Jiayu Li, Y. C. Tay

There is an overgrowing demand for data sharing in academia and industry. However, such sharing has issues with personal privacy and data confidentiality. One option is to share only synthetically-generated versions of the real data. Generative Adversarial Network (GAN) is a recently-popular technique that can be used for this purpose. Relational databases usually have multiple tables that are related to each other. So far, the use of GANs has essentially focused on generating single tables. This paper presents Incremental Relational Generator (IRG), which uses GANs to synthetically generate interrelated tables. Given an empirical relational database, IRG can generate a synthetic version that can be safely shared. IRG generates the tables in some sequential order. The key idea is to construct a context, based on the tables generated so far, when using a GAN to generate the next table. Experiments with public datasets and private student data show that IRG outperforms state-of-the-art in terms of statistical properties and query results.

Submitted: Dec 23, 2023