Paper ID: 2312.15595

Zero-Inflated Bandits

Haoyu Wei, Runzhe Wan, Lei Shi, Rui Song

Many real applications of bandits have sparse non-zero rewards, leading to slow learning rates. A careful distribution modeling that utilizes problem-specific structures is known as critical to estimation efficiency in the statistics literature, yet is under-explored in bandits. To fill the gap, we initiate the study of zero-inflated bandits, where the reward is modeled as a classic semi-parametric distribution called zero-inflated distribution. We carefully design Upper Confidence Bound (UCB) and Thompson Sampling (TS) algorithms for this specific structure. Our algorithms are suitable for a very general class of reward distributions, operating under tail assumptions that are considerably less stringent than the typical sub-Gaussian requirements. Theoretically, we derive the regret bounds for both the UCB and TS algorithms for multi-armed bandit, showing that they can achieve rate-optimal regret when the reward distribution is sub-Gaussian. The superior empirical performance of the proposed methods is shown via extensive numerical studies.

Submitted: Dec 25, 2023