Paper ID: 2312.15817

A Unified Generative Framework for Realistic Lidar Simulation in Autonomous Driving Systems

Hamed Haghighi, Mehrdad Dianati, Valentina Donzella, Kurt Debattista

Simulation models for perception sensors are integral components of automotive simulators used for the virtual Verification and Validation (V\&V) of Autonomous Driving Systems (ADS). These models also serve as powerful tools for generating synthetic datasets to train deep learning-based perception models. Lidar is a widely used sensor type among the perception sensors for ADS due to its high precision in 3D environment scanning. However, developing realistic Lidar simulation models is a significant technical challenge. In particular, unrealistic models can result in a large gap between the synthesised and real-world point clouds, limiting their effectiveness in ADS applications. Recently, deep generative models have emerged as promising solutions to synthesise realistic sensory data. However, for Lidar simulation, deep generative models have been primarily hybridised with conventional algorithms, leaving unified generative approaches largely unexplored in the literature. Motivated by this research gap, we propose a unified generative framework to enhance Lidar simulation fidelity. Our proposed framework projects Lidar point clouds into depth-reflectance images via a lossless transformation, and employs our novel Controllable Lidar point cloud Generative model, CoLiGen, to translate the images. We extensively evaluate our CoLiGen model, comparing it with the state-of-the-art image-to-image translation models using various metrics to assess the realness, faithfulness, and performance of a downstream perception model. Our results show that CoLiGen exhibits superior performance across most metrics. The dataset and source code for this research are available at this https URL.

Submitted: Dec 25, 2023