Paper ID: 2312.15942

Pano-NeRF: Synthesizing High Dynamic Range Novel Views with Geometry from Sparse Low Dynamic Range Panoramic Images

Zhan Lu, Qian Zheng, Boxin Shi, Xudong Jiang

Panoramic imaging research on geometry recovery and High Dynamic Range (HDR) reconstruction becomes a trend with the development of Extended Reality (XR). Neural Radiance Fields (NeRF) provide a promising scene representation for both tasks without requiring extensive prior data. However, in the case of inputting sparse Low Dynamic Range (LDR) panoramic images, NeRF often degrades with under-constrained geometry and is unable to reconstruct HDR radiance from LDR inputs. We observe that the radiance from each pixel in panoramic images can be modeled as both a signal to convey scene lighting information and a light source to illuminate other pixels. Hence, we propose the irradiance fields from sparse LDR panoramic images, which increases the observation counts for faithful geometry recovery and leverages the irradiance-radiance attenuation for HDR reconstruction. Extensive experiments demonstrate that the irradiance fields outperform state-of-the-art methods on both geometry recovery and HDR reconstruction and validate their effectiveness. Furthermore, we show a promising byproduct of spatially-varying lighting estimation. The code is available at https://github.com/Lu-Zhan/Pano-NeRF.

Submitted: Dec 26, 2023