Paper ID: 2312.16497

Mobility and Cost Aware Inference Accelerating Algorithm for Edge Intelligence

Xin Yuan, Ning Li, kang Wei, Wenchao Xu, Quan Chen, Hao Chen, Song Guo

The edge intelligence (EI) has been widely applied recently. Spliting the model between device, edge server, and cloud can improve the performance of EI greatly. The model segmentation without user mobility has been investigated deeply by previous works. However, in most use cases of EI, the end devices are mobile. Only a few works have been carried out on this aspect. These works still have many issues, such as ignoring the energy consumption of mobile device, inappropriate network assumption, and low effectiveness on adaptiving user mobility, etc. Therefore, for addressing the disadvantages of model segmentation and resource allocation in previous works, we propose mobility and cost aware model segmentation and resource allocation algorithm for accelerating the inference at edge (MCSA). Specfically, in the scenario without user mobility, the loop interation gradient descent (Li-GD) algorithm is provided. When the mobile user has a large model inference task needs to be calculated, it will take the energy consumption of mobile user, the communication and computing resource renting cost, and the inference delay into account to find the optimal model segmentation and resource allocation strategy. In the scenario with user mobility, the mobiity aware Li-GD (MLi-GD) algorithm is proposed to calculate the optimal strategy. Then, the properties of the proposed algorithms are investigated, including convergence, complexity, and approximation ratio. The experimental results demonstrate the effectiveness of the proposed algorithms.

Submitted: Dec 27, 2023