Paper ID: 2312.16914
ROI-Aware Multiscale Cross-Attention Vision Transformer for Pest Image Identification
Ga-Eun Kim, Chang-Hwan Son
The pests captured with imaging devices may be relatively small in size compared to the entire images, and complex backgrounds have colors and textures similar to those of the pests, which hinders accurate feature extraction and makes pest identification challenging. The key to pest identification is to create a model capable of detecting regions of interest (ROIs) and transforming them into better ones for attention and discriminative learning. To address these problems, we will study how to generate and update the ROIs via multiscale cross-attention fusion as well as how to be highly robust to complex backgrounds and scale problems. Therefore, we propose a novel ROI-aware multiscale cross-attention vision transformer (ROI-ViT). The proposed ROI-ViT is designed using dual branches, called Pest and ROI branches, which take different types of maps as input: Pest images and ROI maps. To render such ROI maps, ROI generators are built using soft segmentation and a class activation map and then integrated into the ROI-ViT backbone. Additionally, in the dual branch, complementary feature fusion and multiscale hierarchies are implemented via a novel multiscale cross-attention fusion. The class token from the Pest branch is exchanged with the patch tokens from the ROI branch, and vice versa. The experimental results show that the proposed ROI-ViT achieves 81.81%, 99.64%, and 84.66% for IP102, D0, and SauTeg pest datasets, respectively, outperforming state-of-the-art (SOTA) models, such as MViT, PVT, DeiT, Swin-ViT, and EfficientNet. More importantly, for the new challenging dataset IP102(CBSS) that contains only pest images with complex backgrounds and small sizes, the proposed model can maintain high recognition accuracy, whereas that of other SOTA models decrease sharply, demonstrating that our model is more robust to complex background and scale problems.
Submitted: Dec 28, 2023