Paper ID: 2312.17257

Personalized Large Language Model Assistant with Evolving Conditional Memory

Ruifeng Yuan, Shichao Sun, Yongqi Li, Zili Wang, Ziqiang Cao, Wenjie Li

With the rapid development of large language models, AI assistants like ChatGPT have become increasingly integrated into people's works and lives but are limited in personalized services. In this paper, we present a plug-and-play framework that could facilitate personalized large language model assistants with evolving conditional memory. The personalized assistant focuses on intelligently preserving the knowledge and experience from the history dialogue with the user, which can be applied to future tailored responses that better align with the user's preferences. Generally, the assistant generates a set of records from the dialogue dialogue, stores them in a memory bank, and retrieves related memory to improve the quality of the response. For the crucial memory design, we explore different ways of constructing the memory and propose a new memorizing mechanism named conditional memory. We also investigate the retrieval and usage of memory in the generation process. We build the first benchmark to evaluate personalized assistants' ability from three aspects. The experimental results illustrate the effectiveness of our method.

Submitted: Dec 22, 2023