Paper ID: 2401.01141

Spiker+: a framework for the generation of efficient Spiking Neural Networks FPGA accelerators for inference at the edge

Alessio Carpegna, Alessandro Savino, Stefano Di Carlo

Including Artificial Neural Networks in embedded systems at the edge allows applications to exploit Artificial Intelligence capabilities directly within devices operating at the network periphery. This paper introduces Spiker+, a comprehensive framework for generating efficient, low-power, and low-area customized Spiking Neural Networks (SNN) accelerators on FPGA for inference at the edge. Spiker+ presents a configurable multi-layer hardware SNN, a library of highly efficient neuron architectures, and a design framework, enabling the development of complex neural network accelerators with few lines of Python code. Spiker+ is tested on two benchmark datasets, the MNIST and the Spiking Heidelberg Digits (SHD). On the MNIST, it demonstrates competitive performance compared to state-of-the-art SNN accelerators. It outperforms them in terms of resource allocation, with a requirement of 7,612 logic cells and 18 Block RAMs (BRAMs), which makes it fit in very small FPGA, and power consumption, draining only 180mW for a complete inference on an input image. The latency is comparable to the ones observed in the state-of-the-art, with 780us/img. To the authors' knowledge, Spiker+ is the first SNN accelerator tested on the SHD. In this case, the accelerator requires 18,268 logic cells and 51 BRAM, with an overall power consumption of 430mW and a latency of 54 us for a complete inference on input data. This underscores the significance of Spiker+ in the hardware-accelerated SNN landscape, making it an excellent solution to deploy configurable and tunable SNN architectures in resource and power-constrained edge applications.

Submitted: Jan 2, 2024