Paper ID: 2401.01470
TPC-ViT: Token Propagation Controller for Efficient Vision Transformer
Wentao Zhu
Vision transformers (ViTs) have achieved promising results on a variety of Computer Vision tasks, however their quadratic complexity in the number of input tokens has limited their application specially in resource-constrained settings. Previous approaches that employ gradual token reduction to address this challenge assume that token redundancy in one layer implies redundancy in all the following layers. We empirically demonstrate that this assumption is often not correct, i.e., tokens that are redundant in one layer can be useful in later layers. We employ this key insight to propose a novel token propagation controller (TPC) that incorporates two different token-distributions, i.e., pause probability and restart probability to control the reduction and reuse of tokens respectively, which results in more efficient token utilization. To improve the estimates of token distributions, we propose a smoothing mechanism that acts as a regularizer and helps remove noisy outliers. Furthermore, to improve the training-stability of our proposed TPC, we introduce a model stabilizer that is able to implicitly encode local image structures and minimize accuracy fluctuations during model training. We present extensive experimental results on the ImageNet-1K dataset using DeiT, LV-ViT and Swin models to demonstrate the effectiveness of our proposed method. For example, compared to baseline models, our proposed method improves the inference speed of the DeiT-S by 250% while increasing the classification accuracy by 1.0%.
Submitted: Jan 3, 2024