Paper ID: 2401.01916

AstroLLaMA-Chat: Scaling AstroLLaMA with Conversational and Diverse Datasets

Ernest Perkowski, Rui Pan, Tuan Dung Nguyen, Yuan-Sen Ting, Sandor Kruk, Tong Zhang, Charlie O'Neill, Maja Jablonska, Zechang Sun, Michael J. Smith, Huiling Liu, Kevin Schawinski, Kartheik Iyer, Ioana Ciucă for UniverseTBD

We explore the potential of enhancing LLM performance in astronomy-focused question-answering through targeted, continual pre-training. By employing a compact 7B-parameter LLaMA-2 model and focusing exclusively on a curated set of astronomy corpora -- comprising abstracts, introductions, and conclusions -- we achieve notable improvements in specialized topic comprehension. While general LLMs like GPT-4 excel in broader question-answering scenarios due to superior reasoning capabilities, our findings suggest that continual pre-training with limited resources can still enhance model performance on specialized topics. Additionally, we present an extension of AstroLLaMA: the fine-tuning of the 7B LLaMA model on a domain-specific conversational dataset, culminating in the release of the chat-enabled AstroLLaMA for community use. Comprehensive quantitative benchmarking is currently in progress and will be detailed in an upcoming full paper. The model, AstroLLaMA-Chat, is now available at https://huggingface.co/universeTBD, providing the first open-source conversational AI tool tailored for the astronomy community.

Submitted: Jan 3, 2024