Paper ID: 2401.02285
Optimal Real-Weighted Beamforming With Application to Linear and Spherical Arrays
V. Tourbabin, M. Agmon, B. Rafaely, J. Tabrikian
One of the uses of sensor arrays is for spatial filtering or beamforming. Current digital signal processing methods facilitate complex-weighted beamforming, providing flexibility in array design. Previous studies proposed the use of real-valued beamforming weights, which although reduce flexibility in design, may provide a range of benefits, e.g., simplified beamformer implementation or efficient beamforming algorithms. This paper presents a new method for the design of arrays with real-valued weights, that achieve maximum directivity, providing closed-form solution to array weights. The method is studied for linear and spherical arrays, where it is shown that rigid spherical arrays are particularly suitable for real-weight designs as they do not suffer from grating lobes, a dominant feature in linear arrays with real weights. A simulation study is presented for linear and spherical arrays, along with an experimental investigation, validating the theoretical developments.
Submitted: Jan 4, 2024