Paper ID: 2401.02433
FedDiff: Diffusion Model Driven Federated Learning for Multi-Modal and Multi-Clients
DaiXun Li, Weiying Xie, ZiXuan Wang, YiBing Lu, Yunsong Li, Leyuan Fang
With the rapid development of imaging sensor technology in the field of remote sensing, multi-modal remote sensing data fusion has emerged as a crucial research direction for land cover classification tasks. While diffusion models have made great progress in generative models and image classification tasks, existing models primarily focus on single-modality and single-client control, that is, the diffusion process is driven by a single modal in a single computing node. To facilitate the secure fusion of heterogeneous data from clients, it is necessary to enable distributed multi-modal control, such as merging the hyperspectral data of organization A and the LiDAR data of organization B privately on each base station client. In this study, we propose a multi-modal collaborative diffusion federated learning framework called FedDiff. Our framework establishes a dual-branch diffusion model feature extraction setup, where the two modal data are inputted into separate branches of the encoder. Our key insight is that diffusion models driven by different modalities are inherently complementary in terms of potential denoising steps on which bilateral connections can be built. Considering the challenge of private and efficient communication between multiple clients, we embed the diffusion model into the federated learning communication structure, and introduce a lightweight communication module. Qualitative and quantitative experiments validate the superiority of our framework in terms of image quality and conditional consistency.
Submitted: Nov 16, 2023