Paper ID: 2401.02664

Modelling Open-Source Software Reliability Incorporating Swarm Intelligence-Based Techniques

Omar Shatnawi

In the software industry, two software engineering development best practices coexist: open-source and closed-source software. The former has a shared code that anyone can contribute, whereas the latter has a proprietary code that only the owner can access. Software reliability is crucial in the industry when a new product or update is released. Applying meta-heuristic optimization algorithms for closed-source software reliability prediction has produced significant and accurate results. Now, open-source software dominates the landscape of cloud-based systems. Therefore, providing results on open-source software reliability - as a quality indicator - would greatly help solve the open-source software reliability growth-modelling problem. The reliability is predicted by estimating the parameters of the software reliability models. As software reliability models are inherently nonlinear, traditional approaches make estimating the appropriate parameters difficult and ineffective. Consequently, software reliability models necessitate a high-quality parameter estimation technique. These objectives dictate the exploration of potential applications of meta-heuristic swarm intelligence optimization algorithms for optimizing the parameter estimation of nonhomogeneous Poisson process-based open-source software reliability modelling. The optimization algorithms are firefly, social spider, artificial bee colony, grey wolf, particle swarm, moth flame, and whale. The applicability and performance evaluation of the optimization modelling approach is demonstrated through two real open-source software reliability datasets. The results are promising.

Submitted: Jan 5, 2024