Paper ID: 2401.02971
Deep Anomaly Detection in Text
Andrei Manolache
Deep anomaly detection methods have become increasingly popular in recent years, with methods like Stacked Autoencoders, Variational Autoencoders, and Generative Adversarial Networks greatly improving the state-of-the-art. Other methods rely on augmenting classical models (such as the One-Class Support Vector Machine), by learning an appropriate kernel function using Neural Networks. Recent developments in representation learning by self-supervision are proving to be very beneficial in the context of anomaly detection. Inspired by the advancements in anomaly detection using self-supervised learning in the field of computer vision, this thesis aims to develop a method for detecting anomalies by exploiting pretext tasks tailored for text corpora. This approach greatly improves the state-of-the-art on two datasets, 20Newsgroups, and AG News, for both semi-supervised and unsupervised anomaly detection, thus proving the potential for self-supervised anomaly detectors in the field of natural language processing.
Submitted: Dec 14, 2023