Paper ID: 2401.03182

Distribution-aware Interactive Attention Network and Large-scale Cloud Recognition Benchmark on FY-4A Satellite Image

Jiaqing Zhang, Jie Lei, Weiying Xie, Kai Jiang, Mingxiang Cao, Yunsong Li

Accurate cloud recognition and warning are crucial for various applications, including in-flight support, weather forecasting, and climate research. However, recent deep learning algorithms have predominantly focused on detecting cloud regions in satellite imagery, with insufficient attention to the specificity required for accurate cloud recognition. This limitation inspired us to develop the novel FY-4A-Himawari-8 (FYH) dataset, which includes nine distinct cloud categories and uses precise domain adaptation methods to align 70,419 image-label pairs in terms of projection, temporal resolution, and spatial resolution, thereby facilitating the training of supervised deep learning networks. Given the complexity and diversity of cloud formations, we have thoroughly analyzed the challenges inherent to cloud recognition tasks, examining the intricate characteristics and distribution of the data. To effectively address these challenges, we designed a Distribution-aware Interactive-Attention Network (DIAnet), which preserves pixel-level details through a high-resolution branch and a parallel multi-resolution cross-branch. We also integrated a distribution-aware loss (DAL) to mitigate the imbalance across cloud categories. An Interactive Attention Module (IAM) further enhances the robustness of feature extraction combined with spatial and channel information. Empirical evaluations on the FYH dataset demonstrate that our method outperforms other cloud recognition networks, achieving superior performance in terms of mean Intersection over Union (mIoU). The code for implementing DIAnet is available at https://github.com/icey-zhang/DIAnet.

Submitted: Jan 6, 2024