Paper ID: 2401.03804

TeleChat Technical Report

Zhongjiang He, Zihan Wang, Xinzhang Liu, Shixuan Liu, Yitong Yao, Yuyao Huang, Xuelong Li, Yongxiang Li, Zhonghao Che, Zhaoxi Zhang, Yan Wang, Xin Wang, Luwen Pu, Huinan Xu, Ruiyu Fang, Yu Zhao, Jie Zhang, Xiaomeng Huang, Zhilong Lu, Jiaxin Peng, Wenjun Zheng, Shiquan Wang, Bingkai Yang, Xuewei he, Zhuoru Jiang, Qiyi Xie, Yanhan Zhang, Zhongqiu Li, Lingling Shi, Weiwei Fu, Yin Zhang, Zilu Huang, Sishi Xiong, Yuxiang Zhang, Chao Wang, Shuangyong Song

In this technical report, we present TeleChat, a collection of large language models (LLMs) with parameters of 3 billion, 7 billion and 12 billion. It includes pretrained language models as well as fine-tuned chat models that is aligned with human preferences. TeleChat is initially pretrained on an extensive corpus containing a diverse collection of texts from both English and Chinese languages, including trillions of tokens. Subsequently, the model undergoes fine-tuning to align with human preferences, following a detailed methodology that we describe. We evaluate the performance of TeleChat on various tasks, including language understanding, mathematics, reasoning, code generation, and knowledge-based question answering. Our findings indicate that TeleChat achieves comparable performance to other open-source models of similar size across a wide range of public benchmarks. To support future research and applications utilizing LLMs, we release the fine-tuned model checkpoints of TeleChat's 7B and 12B variant, along with code and a portion of our pretraining data, to the public community.

Submitted: Jan 8, 2024