Paper ID: 2401.03862
End-to-End Crystal Structure Prediction from Powder X-Ray Diffraction
Qingsi Lai, Lin Yao, Zhifeng Gao, Siyuan Liu, Hongshuai Wang, Shuqi Lu, Di He, Liwei Wang, Cheng Wang, Guolin Ke
Crystal structure prediction (CSP) has made significant progress, but most methods focus on unconditional generations of inorganic crystal with limited atoms in the unit cell. This study introduces XtalNet, the first equivariant deep generative model for end-to-end CSP from Powder X-ray Diffraction (PXRD). Unlike previous methods that rely solely on composition, XtalNet leverages PXRD as an additional condition, eliminating ambiguity and enabling the generation of complex organic structures with up to 400 atoms in the unit cell. XtalNet comprises two modules: a Contrastive PXRD-Crystal Pretraining (CPCP) module that aligns PXRD space with crystal structure space, and a Conditional Crystal Structure Generation (CCSG) module that generates candidate crystal structures conditioned on PXRD patterns. Evaluation on two MOF datasets (hMOF-100 and hMOF-400) demonstrates XtalNet's effectiveness. XtalNet achieves a top-10 Match Rate of 90.2% and 79% for hMOF-100 and hMOF-400 datasets in conditional crystal structure prediction task, respectively. XtalNet represents a significant advance in CSP, enabling the prediction of complex structures from PXRD data without the need for external databases or manual intervention. It has the potential to revolutionize PXRD analysis. It enables the direct prediction of crystal structures from experimental measurements, eliminating the need for manual intervention and external databases. This opens up new possibilities for automated crystal structure determination and the accelerated discovery of novel materials.
Submitted: Jan 8, 2024