Paper ID: 2401.04198
Curiosity & Entropy Driven Unsupervised RL in Multiple Environments
Shaurya Dewan, Anisha Jain, Zoe LaLena, Lifan Yu
The authors of 'Unsupervised Reinforcement Learning in Multiple environments' propose a method, alpha-MEPOL, to tackle unsupervised RL across multiple environments. They pre-train a task-agnostic exploration policy using interactions from an entire environment class and then fine-tune this policy for various tasks using supervision. We expanded upon this work, with the goal of improving performance. We primarily propose and experiment with five new modifications to the original work: sampling trajectories using an entropy-based probability distribution, dynamic alpha, higher KL Divergence threshold, curiosity-driven exploration, and alpha-percentile sampling on curiosity. Dynamic alpha and higher KL-Divergence threshold both provided a significant improvement over the baseline from the earlier work. PDF-sampling failed to provide any improvement due to it being approximately equivalent to the baseline method when the sample space is small. In high-dimensional environments, the addition of curiosity-driven exploration enhances learning by encouraging the agent to seek diverse experiences and explore the unknown more. However, its benefits are limited in low-dimensional and simpler environments where exploration possibilities are constrained and there is little that is truly unknown to the agent. Overall, some of our experiments did boost performance over the baseline and there are a few directions that seem promising for further research.
Submitted: Jan 8, 2024