Paper ID: 2401.05507
InfiAgent-DABench: Evaluating Agents on Data Analysis Tasks
Xueyu Hu, Ziyu Zhao, Shuang Wei, Ziwei Chai, Qianli Ma, Guoyin Wang, Xuwu Wang, Jing Su, Jingjing Xu, Ming Zhu, Yao Cheng, Jianbo Yuan, Jiwei Li, Kun Kuang, Yang Yang, Hongxia Yang, Fei Wu
In this paper, we introduce InfiAgent-DABench, the first benchmark specifically designed to evaluate LLM-based agents on data analysis tasks. These tasks require agents to end-to-end solving complex tasks by interacting with an execution environment. This benchmark contains DAEval, a dataset consisting of 257 data analysis questions derived from 52 CSV files, and an agent framework which incorporates LLMs to serve as data analysis agents for both serving and evaluation. Since data analysis questions are often open-ended and hard to evaluate without human supervision, we adopt a format-prompting technique to convert each question into a closed-form format so that they can be automatically evaluated. Our extensive benchmarking of 34 LLMs uncovers the current challenges encountered in data analysis tasks. In addition, building on top of our agent framework, we develop a specialized agent, DAAgent, which surpasses GPT-3.5 by 3.9% on DABench. Evaluation datasets and toolkits for InfiAgent-DABench are released at https://github.com/InfiAgent/InfiAgent .
Submitted: Jan 10, 2024