Paper ID: 2401.05629

Learning Performance-Oriented Control Barrier Functions Under Complex Safety Constraints and Limited Actuation

Shaoru Chen, Mahyar Fazlyab

Control Barrier Functions (CBFs) provide an elegant framework for designing safety filters for nonlinear control systems by constraining their trajectories to an invariant subset of a prespecified safe set. However, the task of finding a CBF that concurrently maximizes the volume of the resulting control invariant set while accommodating complex safety constraints, particularly in high relative degree systems with actuation constraints, continues to pose a substantial challenge. In this work, we propose a novel self-supervised learning framework that holistically addresses these hurdles. Given a Boolean composition of multiple state constraints that define the safe set, our approach starts with building a single continuously differentiable function whose 0-superlevel set provides an inner approximation of the safe set. We then use this function together with a smooth neural network to parameterize the CBF candidate. Finally, we design a training loss function based on a Hamilton-Jacobi partial differential equation to train the CBF while enlarging the volume of the induced control invariant set. We demonstrate the effectiveness of our approach via numerical experiments.

Submitted: Jan 11, 2024