Paper ID: 2401.06293

MultiSlot ReRanker: A Generic Model-based Re-Ranking Framework in Recommendation Systems

Qiang Charles Xiao, Ajith Muralidharan, Birjodh Tiwana, Johnson Jia, Fedor Borisyuk, Aman Gupta, Dawn Woodard

In this paper, we propose a generic model-based re-ranking framework, MultiSlot ReRanker, which simultaneously optimizes relevance, diversity, and freshness. Specifically, our Sequential Greedy Algorithm (SGA) is efficient enough (linear time complexity) for large-scale production recommendation engines. It achieved a lift of $+6\%$ to $ +10\%$ offline Area Under the receiver operating characteristic Curve (AUC) which is mainly due to explicitly modeling mutual influences among items of a list, and leveraging the second pass ranking scores of multiple objectives. In addition, we have generalized the offline replay theory to multi-slot re-ranking scenarios, with trade-offs among multiple objectives. The offline replay results can be further improved by Pareto Optimality. Moreover, we've built a multi-slot re-ranking simulator based on OpenAI Gym integrated with the Ray framework. It can be easily configured for different assumptions to quickly benchmark both reinforcement learning and supervised learning algorithms.

Submitted: Jan 11, 2024