Paper ID: 2401.06833

A hierarchical control framework for autonomous decision-making systems: Integrating HMDP and MPC

Xue-Fang Wang, Jingjing Jiang, Wen-Hua Chen

This paper proposes a comprehensive hierarchical control framework for autonomous decision-making arising in robotics and autonomous systems. In a typical hierarchical control architecture, high-level decision making is often characterised by discrete state and decision/control sets. However, a rational decision is usually affected by not only the discrete states of the autonomous system, but also the underlying continuous dynamics even the evolution of its operational environment. This paper proposes a holistic and comprehensive design process and framework for this type of challenging problems, from new modelling and design problem formulation to control design and stability analysis. It addresses the intricate interplay between traditional continuous systems dynamics utilized at the low levels for control design and discrete Markov decision processes (MDP) for facilitating high-level decision making. We model the decision making system in complex environments as a hybrid system consisting of a controlled MDP and autonomous (i.e. uncontrolled) continuous dynamics. Consequently, the new formulation is called as hybrid Markov decision process (HMDP). The design problem is formulated with a focus on ensuring both safety and optimality while taking into account the influence of both the discrete and continuous state variables of different levels. With the help of the model predictive control (MPC) concept, a decision maker design scheme is proposed for the proposed hybrid decision making model. By carefully designing key ingredients involved in this scheme, it is shown that the recursive feasibility and stability of the proposed autonomous decision making scheme are guaranteed. The proposed framework is applied to develop an autonomous lane changing system for intelligent vehicles.

Submitted: Jan 12, 2024