Paper ID: 2401.06946

3D Object Detection and High-Resolution Traffic Parameters Extraction Using Low-Resolution LiDAR Data

Linlin Zhang, Xiang Yu, Armstrong Aboah, Yaw Adu-Gyamfi

Traffic volume data collection is a crucial aspect of transportation engineering and urban planning, as it provides vital insights into traffic patterns, congestion, and infrastructure efficiency. Traditional manual methods of traffic data collection are both time-consuming and costly. However, the emergence of modern technologies, particularly Light Detection and Ranging (LiDAR), has revolutionized the process by enabling efficient and accurate data collection. Despite the benefits of using LiDAR for traffic data collection, previous studies have identified two major limitations that have impeded its widespread adoption. These are the need for multiple LiDAR systems to obtain complete point cloud information of objects of interest, as well as the labor-intensive process of annotating 3D bounding boxes for object detection tasks. In response to these challenges, the current study proposes an innovative framework that alleviates the need for multiple LiDAR systems and simplifies the laborious 3D annotation process. To achieve this goal, the study employed a single LiDAR system, that aims at reducing the data acquisition cost and addressed its accompanying limitation of missing point cloud information by developing a Point Cloud Completion (PCC) framework to fill in missing point cloud information using point density. Furthermore, we also used zero-shot learning techniques to detect vehicles and pedestrians, as well as proposed a unique framework for extracting low to high features from the object of interest, such as height, acceleration, and speed. Using the 2D bounding box detection and extracted height information, this study is able to generate 3D bounding boxes automatically without human intervention.

Submitted: Jan 13, 2024