Paper ID: 2401.06980
Joint Unsupervised and Supervised Training for Automatic Speech Recognition via Bilevel Optimization
A F M Saif, Xiaodong Cui, Han Shen, Songtao Lu, Brian Kingsbury, Tianyi Chen
In this paper, we present a novel bilevel optimization-based training approach to training acoustic models for automatic speech recognition (ASR) tasks that we term {bi-level joint unsupervised and supervised training (BL-JUST)}. {BL-JUST employs a lower and upper level optimization with an unsupervised loss and a supervised loss respectively, leveraging recent advances in penalty-based bilevel optimization to solve this challenging ASR problem with affordable complexity and rigorous convergence guarantees.} To evaluate BL-JUST, extensive experiments on the LibriSpeech and TED-LIUM v2 datasets have been conducted. BL-JUST achieves superior performance over the commonly used pre-training followed by fine-tuning strategy.
Submitted: Jan 13, 2024