Paper ID: 2401.07065

Tensor Graph Convolutional Network for Dynamic Graph Representation Learning

Ling Wang, Ye Yuan

Dynamic graphs (DG) describe dynamic interactions between entities in many practical scenarios. Most existing DG representation learning models combine graph convolutional network and sequence neural network, which model spatial-temporal dependencies through two different types of neural networks. However, this hybrid design cannot well capture the spatial-temporal continuity of a DG. In this paper, we propose a tensor graph convolutional network to learn DG representations in one convolution framework based on the tensor product with the following two-fold ideas: a) representing the information of DG by tensor form; b) adopting tensor product to design a tensor graph convolutional network modeling spatial-temporal feature simultaneously. Experiments on real-world DG datasets demonstrate that our model obtains state-of-the-art performance.

Submitted: Jan 13, 2024