Paper ID: 2401.08111

Mobile Contactless Palmprint Recognition: Use of Multiscale, Multimodel Embeddings

Steven A. Grosz, Akash Godbole, Anil K. Jain

Contactless palmprints are comprised of both global and local discriminative features. Most prior work focuses on extracting global features or local features alone for palmprint matching, whereas this research introduces a novel framework that combines global and local features for enhanced palmprint matching accuracy. Leveraging recent advancements in deep learning, this study integrates a vision transformer (ViT) and a convolutional neural network (CNN) to extract complementary local and global features. Next, a mobile-based, end-to-end palmprint recognition system is developed, referred to as Palm-ID. On top of the ViT and CNN features, Palm-ID incorporates a palmprint enhancement module and efficient dimensionality reduction (for faster matching). Palm-ID balances the trade-off between accuracy and latency, requiring just 18ms to extract a template of size 516 bytes, which can be efficiently searched against a 10,000 palmprint gallery in 0.33ms on an AMD EPYC 7543 32-Core CPU utilizing 128-threads. Cross-database matching protocols and evaluations on large-scale operational datasets demonstrate the robustness of the proposed method, achieving a TAR of 98.06% at FAR=0.01% on a newly collected, time-separated dataset. To show a practical deployment of the end-to-end system, the entire recognition pipeline is embedded within a mobile device for enhanced user privacy and security.

Submitted: Jan 16, 2024