Paper ID: 2401.08174

An Efficient Instance Segmentation Framework Using Segmentation Foundation Models with Oriented Bounding Box Prompts

Zhen Zhou, Junfeng Fan, Yunkai Ma, Sihan Zhao, Fengshui Jing, Min Tan

Instance segmentation in unmanned aerial vehicle measurement is a long-standing challenge. Since horizontal bounding boxes introduce many interference objects, oriented bounding boxes (OBBs) are usually used for instance identification. However, based on ``segmentation within bounding box'' paradigm, current instance segmentation methods using OBBs are overly dependent on bounding box detection performance. To tackle this, this paper proposes OBSeg, an efficient instance segmentation framework using OBBs. OBSeg is based on box prompt-based segmentation foundation models (BSMs), e.g., Segment Anything Model. Specifically, OBSeg first detects OBBs to distinguish instances and provide coarse localization information. Then, it predicts OBB prompt-related masks for fine segmentation. Since OBBs only serve as prompts, OBSeg alleviates the over-dependence on bounding box detection performance of current instance segmentation methods using OBBs. In addition, to enable BSMs to handle OBB prompts, we propose a novel OBB prompt encoder. To make OBSeg more lightweight and further improve the performance of lightweight distilled BSMs, a Gaussian smoothing-based knowledge distillation method is introduced. Experiments demonstrate that OBSeg outperforms current instance segmentation methods on multiple public datasets. The code is available at this https URL.

Submitted: Jan 16, 2024