Paper ID: 2401.08525
GATS: Gather-Attend-Scatter
Konrad Zolna, Serkan Cabi, Yutian Chen, Eric Lau, Claudio Fantacci, Jurgis Pasukonis, Jost Tobias Springenberg, Sergio Gomez Colmenarejo
As the AI community increasingly adopts large-scale models, it is crucial to develop general and flexible tools to integrate them. We introduce Gather-Attend-Scatter (GATS), a novel module that enables seamless combination of pretrained foundation models, both trainable and frozen, into larger multimodal networks. GATS empowers AI systems to process and generate information across multiple modalities at different rates. In contrast to traditional fine-tuning, GATS allows for the original component models to remain frozen, avoiding the risk of them losing important knowledge acquired during the pretraining phase. We demonstrate the utility and versatility of GATS with a few experiments across games, robotics, and multimodal input-output systems.
Submitted: Jan 16, 2024