Paper ID: 2401.08689
NODI: Out-Of-Distribution Detection with Noise from Diffusion
Jingqiu Zhou, Aojun Zhou, Hongsheng Li
Out-of-distribution (OOD) detection is a crucial part of deploying machine learning models safely. It has been extensively studied with a plethora of methods developed in the literature. This problem is tackled with an OOD score computation, however, previous methods compute the OOD scores with limited usage of the in-distribution dataset. For instance, the OOD scores are computed with information from a small portion of the in-distribution data. Furthermore, these methods encode images with a neural image encoder. The robustness of these methods is rarely checked with respect to image encoders of different training methods and architectures. In this work, we introduce the diffusion process into the OOD task. The diffusion model integrates information on the whole training set into the predicted noise vectors. What's more, we deduce a closed-form solution for the noise vector (stable point). Then the noise vector is converted into our OOD score, we test both the deep model predicted noise vector and the closed-form noise vector on the OOD benchmarks \cite{openood}. Our method outperforms previous OOD methods across all types of image encoders (Table. \ref{main}). A $3.5\%$ performance gain is achieved with the MAE-based image encoder. Moreover, we studied the robustness of OOD methods by applying different types of image encoders. Some OOD methods failed to generalize well when switching image encoders from ResNet to Vision Transformers, our method performs exhibits good robustness with all the image encoders.
Submitted: Jan 13, 2024