Paper ID: 2401.09296
Tight Fusion of Events and Inertial Measurements for Direct Velocity Estimation
Wanting Xu, Xin Peng, Laurent Kneip
Traditional visual-inertial state estimation targets absolute camera poses and spatial landmark locations while first-order kinematics are typically resolved as an implicitly estimated sub-state. However, this poses a risk in velocity-based control scenarios, as the quality of the estimation of kinematics depends on the stability of absolute camera and landmark coordinates estimation. To address this issue, we propose a novel solution to tight visual-inertial fusion directly at the level of first-order kinematics by employing a dynamic vision sensor instead of a normal camera. More specifically, we leverage trifocal tensor geometry to establish an incidence relation that directly depends on events and camera velocity, and demonstrate how velocity estimates in highly dynamic situations can be obtained over short time intervals. Noise and outliers are dealt with using a nested two-layer RANSAC scheme. Additionally, smooth velocity signals are obtained from a tight fusion with pre-integrated inertial signals using a sliding window optimizer. Experiments on both simulated and real data demonstrate that the proposed tight event-inertial fusion leads to continuous and reliable velocity estimation in highly dynamic scenarios independently of absolute coordinates. Furthermore, in extreme cases, it achieves more stable and more accurate estimation of kinematics than traditional, point-position-based visual-inertial odometry.
Submitted: Jan 17, 2024