Paper ID: 2401.10017

Text Region Multiple Information Perception Network for Scene Text Detection

Jinzhi Zheng, Libo Zhang, Yanjun Wu, Chen Zhao

Segmentation-based scene text detection algorithms can handle arbitrary shape scene texts and have strong robustness and adaptability, so it has attracted wide attention. Existing segmentation-based scene text detection algorithms usually only segment the pixels in the center region of the text, while ignoring other information of the text region, such as edge information, distance information, etc., thus limiting the detection accuracy of the algorithm for scene text. This paper proposes a plug-and-play module called the Region Multiple Information Perception Module (RMIPM) to enhance the detection performance of segmentation-based algorithms. Specifically, we design an improved module that can perceive various types of information about scene text regions, such as text foreground classification maps, distance maps, direction maps, etc. Experiments on MSRA-TD500 and TotalText datasets show that our method achieves comparable performance with current state-of-the-art algorithms.

Submitted: Jan 18, 2024