Paper ID: 2401.10270
Migrating Birds Optimization-Based Feature Selection for Text Classification
Cem Kaya, Zeynep Hilal Kilimci, Mitat Uysal, Murat Kaya
This research introduces a novel approach, MBO-NB, that leverages Migrating Birds Optimization (MBO) coupled with Naive Bayes as an internal classifier to address feature selection challenges in text classification having large number of features. Focusing on computational efficiency, we preprocess raw data using the Information Gain algorithm, strategically reducing the feature count from an average of 62221 to 2089. Our experiments demonstrate MBO-NB's superior effectiveness in feature reduction compared to other existing techniques, emphasizing an increased classification accuracy. The successful integration of Naive Bayes within MBO presents a well-rounded solution. In individual comparisons with Particle Swarm Optimization (PSO), MBO-NB consistently outperforms by an average of 6.9% across four setups. This research offers valuable insights into enhancing feature selection methods, providing a scalable and effective solution for text classification
Submitted: Jan 4, 2024