Paper ID: 2401.11669
An Improved Grey Wolf Optimization Algorithm for Heart Disease Prediction
Sihan Niu, Yifan Zhou, Zhikai Li, Shuyao Huang, Yujun Zhou
This paper presents a unique solution to challenges in medical image processing by incorporating an adaptive curve grey wolf optimization (ACGWO) algorithm into neural network backpropagation. Neural networks show potential in medical data but suffer from issues like overfitting and lack of interpretability due to imbalanced and scarce data. Traditional Gray Wolf Optimization (GWO) also has its drawbacks, such as a lack of population diversity and premature convergence. This paper addresses these problems by introducing an adaptive algorithm, enhancing the standard GWO with a sigmoid function. This algorithm was extensively compared to four leading algorithms using six well-known test functions, outperforming them effectively. Moreover, by utilizing the ACGWO, we increase the robustness and generalization of the neural network, resulting in more interpretable predictions. Applied to the publicly accessible Cleveland Heart Disease dataset, our technique surpasses ten other methods, achieving 86.8% accuracy, indicating its potential for efficient heart disease prediction in the clinical setting.
Submitted: Jan 22, 2024