Paper ID: 2401.11698

Admission Prediction in Undergraduate Applications: an Interpretable Deep Learning Approach

Amisha Priyadarshini, Barbara Martinez-Neda, Sergio Gago-Masague

This article addresses the challenge of validating the admission committee's decisions for undergraduate admissions. In recent years, the traditional review process has struggled to handle the overwhelmingly large amount of applicants' data. Moreover, this traditional assessment often leads to human bias, which might result in discrimination among applicants. Although classical machine learning-based approaches exist that aim to verify the quantitative assessment made by the application reviewers, these methods lack scalability and suffer from performance issues when a large volume of data is in place. In this context, we propose deep learning-based classifiers, namely Feed-Forward and Input Convex neural networks, which overcome the challenges faced by the existing methods. Furthermore, we give additional insights into our model by incorporating an interpretability module, namely LIME. Our training and test datasets comprise applicants' data with a wide range of variables and information. Our models achieve higher accuracy compared to the best-performing traditional machine learning-based approach by a considerable margin of 3.03\%. Additionally, we show the sensitivity of different features and their relative impacts on the overall admission decision using the LIME technique.

Submitted: Jan 22, 2024