Paper ID: 2401.12046

Fourier Transporter: Bi-Equivariant Robotic Manipulation in 3D

Haojie Huang, Owen Howell, Dian Wang, Xupeng Zhu, Robin Walters, Robert Platt

Many complex robotic manipulation tasks can be decomposed as a sequence of pick and place actions. Training a robotic agent to learn this sequence over many different starting conditions typically requires many iterations or demonstrations, especially in 3D environments. In this work, we propose Fourier Transporter (FourTran) which leverages the two-fold SE(d)xSE(d) symmetry in the pick-place problem to achieve much higher sample efficiency. FourTran is an open-loop behavior cloning method trained using expert demonstrations to predict pick-place actions on new environments. FourTran is constrained to incorporate symmetries of the pick and place actions independently. Our method utilizes a fiber space Fourier transformation that allows for memory-efficient construction. We test our proposed network on the RLbench benchmark and achieve state-of-the-art results across various tasks.

Submitted: Jan 22, 2024