Paper ID: 2401.12247
Exploring consumers response to text-based chatbots in e-commerce: The moderating role of task complexity and chatbot disclosure
Xusen Cheng, Ying Bao, Alex Zarifis, Wankun Gong, Jian Mou
Artificial intelligence based chatbots have brought unprecedented business potential. This study aims to explore consumers trust and response to a text-based chatbot in ecommerce, involving the moderating effects of task complexity and chatbot identity disclosure. A survey method with 299 useable responses was conducted in this research. This study adopted the ordinary least squares regression to test the hypotheses. First, the consumers perception of both the empathy and friendliness of the chatbot positively impacts their trust in it. Second, task complexity negatively moderates the relationship between friendliness and consumers trust. Third, disclosure of the text based chatbot negatively moderates the relationship between empathy and consumers trust, while it positively moderates the relationship between friendliness and consumers trust. Fourth, consumers trust in the chatbot increases their reliance on the chatbot and decreases their resistance to the chatbot in future interactions. Adopting the stimulus organism response framework, this study provides important insights on consumers perception and response to the text-based chatbot. The findings of this research also make suggestions that can increase consumers positive responses to text based chatbots. Extant studies have investigated the effects of automated bots attributes on consumers perceptions. However, the boundary conditions of these effects are largely ignored. This research is one of the first attempts to provide a deep understanding of consumers responses to a chatbot.
Submitted: Jan 20, 2024