Paper ID: 2401.12683
LLpowershap: Logistic Loss-based Automated Shapley Values Feature Selection Method
Iqbal Madakkatel, Elina Hyppönen
Shapley values have been used extensively in machine learning, not only to explain black box machine learning models, but among other tasks, also to conduct model debugging, sensitivity and fairness analyses and to select important features for robust modelling and for further follow-up analyses. Shapley values satisfy certain axioms that promote fairness in distributing contributions of features toward prediction or reducing error, after accounting for non-linear relationships and interactions when complex machine learning models are employed. Recently, a number of feature selection methods utilising Shapley values have been introduced. Here, we present a novel feature selection method, LLpowershap, which makes use of loss-based Shapley values to identify informative features with minimal noise among the selected sets of features. Our simulation results show that LLpowershap not only identifies higher number of informative features but outputs fewer noise features compared to other state-of-the-art feature selection methods. Benchmarking results on four real-world datasets demonstrate higher or at par predictive performance of LLpowershap compared to other Shapley based wrapper methods, or filter methods.
Submitted: Jan 23, 2024