Paper ID: 2401.12751

PSDF: Prior-Driven Neural Implicit Surface Learning for Multi-view Reconstruction

Wanjuan Su, Chen Zhang, Qingshan Xu, Wenbing Tao

Surface reconstruction has traditionally relied on the Multi-View Stereo (MVS)-based pipeline, which often suffers from noisy and incomplete geometry. This is due to that although MVS has been proven to be an effective way to recover the geometry of the scenes, especially for locally detailed areas with rich textures, it struggles to deal with areas with low texture and large variations of illumination where the photometric consistency is unreliable. Recently, Neural Implicit Surface Reconstruction (NISR) combines surface rendering and volume rendering techniques and bypasses the MVS as an intermediate step, which has emerged as a promising alternative to overcome the limitations of traditional pipelines. While NISR has shown impressive results on simple scenes, it remains challenging to recover delicate geometry from uncontrolled real-world scenes which is caused by its underconstrained optimization. To this end, the framework PSDF is proposed which resorts to external geometric priors from a pretrained MVS network and internal geometric priors inherent in the NISR model to facilitate high-quality neural implicit surface learning. Specifically, the visibility-aware feature consistency loss and depth prior-assisted sampling based on external geometric priors are introduced. These proposals provide powerfully geometric consistency constraints and aid in locating surface intersection points, thereby significantly improving the accuracy and delicate reconstruction of NISR. Meanwhile, the internal prior-guided importance rendering is presented to enhance the fidelity of the reconstructed surface mesh by mitigating the biased rendering issue in NISR. Extensive experiments on the Tanks and Temples dataset show that PSDF achieves state-of-the-art performance on complex uncontrolled scenes.

Submitted: Jan 23, 2024