Paper ID: 2401.13099
Sparse identification of nonlinear dynamics in the presence of library and system uncertainty
Andrew O'Brien
The SINDy algorithm has been successfully used to identify the governing equations of dynamical systems from time series data. However, SINDy assumes the user has prior knowledge of the variables in the system and of a function library that can act as a basis for the system. In this paper, we demonstrate on real world data how the Augmented SINDy algorithm outperforms SINDy in the presence of system variable uncertainty. We then show SINDy can be further augmented to perform robustly when both kinds of uncertainty are present.
Submitted: Jan 23, 2024