Paper ID: 2401.13403

SEDNet: Shallow Encoder-Decoder Network for Brain Tumor Segmentation

Chollette C. Olisah, Sofie V. Cauter

Despite the advancement in computational modeling towards brain tumor segmentation, of which several models have been developed, it is evident from the computational complexity of existing models that performance and efficiency under clinical application scenarios are still limited. Therefore, this paper proposes a tumor segmentation framework. It includes a novel shallow encoder and decoder network named SEDNet for brain tumor segmentation. The highlights of SEDNet include sufficiency in hierarchical convolutional downsampling and selective skip mechanism for cost-efficient and effective brain tumor semantic segmentation, among other features. The preprocessor and optimization function approaches are devised to minimize the uncertainty in feature learning impacted by nontumor slices or empty masks with corresponding brain slices and address class imbalances as well as boundary irregularities of tumors, respectively. Through experiments, SEDNet achieved impressive dice and Hausdorff scores of 0.9308 %, 0.9451 %, and 0.9026 %, and 0.7040 mm, 1.2866 mm, and 0.7762 mm for the non-enhancing tumor core (NTC), peritumoral edema (ED), and enhancing tumor (ET), respectively. This is one of the few works to report segmentation performance on NTC. Furthermore, through transfer learning with initialized SEDNet pre-trained weights, termed SEDNetX, a performance increase is observed. The dice and Hausdorff scores recorded are 0.9336%, 0.9478%, 0.9061%, 0.6983 mm, 1.2691 mm, and 0.7711 mm for NTC, ED, and ET, respectively. With about 1.3 million parameters and impressive performance in comparison to the state-of-the-art, SEDNet(X) is shown to be computationally efficient for real-time clinical diagnosis. The code is available on Github .

Submitted: Jan 24, 2024