Paper ID: 2401.14698
Under the Surface: Tracking the Artifactuality of LLM-Generated Data
Debarati Das, Karin De Langis, Anna Martin-Boyle, Jaehyung Kim, Minhwa Lee, Zae Myung Kim, Shirley Anugrah Hayati, Risako Owan, Bin Hu, Ritik Parkar, Ryan Koo, Jonginn Park, Aahan Tyagi, Libby Ferland, Sanjali Roy, Vincent Liu, Dongyeop Kang
This work delves into the expanding role of large language models (LLMs) in generating artificial data. LLMs are increasingly employed to create a variety of outputs, including annotations, preferences, instruction prompts, simulated dialogues, and free text. As these forms of LLM-generated data often intersect in their application, they exert mutual influence on each other and raise significant concerns about the quality and diversity of the artificial data incorporated into training cycles, leading to an artificial data ecosystem. To the best of our knowledge, this is the first study to aggregate various types of LLM-generated text data, from more tightly constrained data like "task labels" to more lightly constrained "free-form text". We then stress test the quality and implications of LLM-generated artificial data, comparing it with human data across various existing benchmarks. Despite artificial data's capability to match human performance, this paper reveals significant hidden disparities, especially in complex tasks where LLMs often miss the nuanced understanding of intrinsic human-generated content. This study critically examines diverse LLM-generated data and emphasizes the need for ethical practices in data creation and when using LLMs. It highlights the LLMs' shortcomings in replicating human traits and behaviors, underscoring the importance of addressing biases and artifacts produced in LLM-generated content for future research and development. All data and code are available on our project page.
Submitted: Jan 26, 2024