Paper ID: 2401.14992
Graph-based Active Learning for Entity Cluster Repair
Victor Christen, Daniel Obraczka, Marvin Hofer, Martin Franke, Erhard Rahm
Cluster repair methods aim to determine errors in clusters and modify them so that each cluster consists of records representing the same entity. Current cluster repair methodologies primarily assume duplicate-free data sources, where each record from one source corresponds to a unique record from another. However, real-world data often deviates from this assumption due to quality issues. Recent approaches apply clustering methods in combination with link categorization methods so they can be applied to data sources with duplicates. Nevertheless, the results do not show a clear picture since the quality highly varies depending on the configuration and dataset. In this study, we introduce a novel approach for cluster repair that utilizes graph metrics derived from the underlying similarity graphs. These metrics are pivotal in constructing a classification model to distinguish between correct and incorrect edges. To address the challenge of limited training data, we integrate an active learning mechanism tailored to cluster-specific attributes. The evaluation shows that the method outperforms existing cluster repair methods without distinguishing between duplicate-free or dirty data sources. Notably, our modified active learning strategy exhibits enhanced performance when dealing with datasets containing duplicates, showcasing its effectiveness in such scenarios.
Submitted: Jan 26, 2024