Paper ID: 2401.15324
Neutrino Reconstruction in TRIDENT Based on Graph Neural Network
Cen Mo, Fuyudi Zhang, Liang Li
TRopIcal DEep-sea Neutrino Telescope (TRIDENT) is a next-generation neutrino telescope to be located in the South China Sea. With a large detector volume and the use of advanced hybrid digital optical modules (hDOMs), TRIDENT aims to discover multiple astrophysical neutrino sources and probe all-flavor neutrino physics. The reconstruction resolution of primary neutrinos is on the critical path to these scientific goals. We have developed a novel reconstruction method based on graph neural network (GNN) for TRIDENT. In this paper, we present the reconstruction performance of the GNN-based approach on both track- and shower-like neutrino events in TRIDENT.
Submitted: Jan 27, 2024